Deep kernel supervised hashing for node classification in structural networks
نویسندگان
چکیده
Node classification in structural networks has been proven to be useful many real world applications. With the development of network embedding, performance node greatly improved. However, nearly all existing embedding based methods are hard capture actual category features a because linearly inseparable problem low-dimensional space; meanwhile they cannot incorporate simultaneously structure information and label into embedding. To address above problems, this paper, we propose novel Deep Kernel Supervised Hashing (DKSH) method learn hashing representations nodes for classification. Specifically, deep multiple kernel learning is first proposed map suitable Hilbert space deal with problem. Then, instead only considering similarity between two nodes, matrix designed merge both information. by matrix, learned preserve kinds well from space. Extensive experiments show that significantly outperforms state-of-the-art baselines over three benchmark datasets.
منابع مشابه
Supervised Hashing with Deep Neural Networks
In this paper, we propose training very deep neural networks (DNNs) for supervised learning of hash codes. Existing methods in this context train relatively “shallow” networks limited by the issues arising in back propagation (e.g. vanishing gradients) as well as computational efficiency. We propose a novel and efficient training algorithm inspired by alternating direction method of multipliers...
متن کاملDeep Triplet Supervised Hashing
Hashing is one of the most popular and powerful approximate nearest neighbor search techniques for large-scale image retrieval. Most traditional hashing methods first represent images as off-the-shelf visual features and then produce hash codes in a separate stage. However, off-the-shelf visual features may not be optimally compatible with the hash code learning procedure, which may result in s...
متن کاملDeep Supervised Discrete Hashing
With the rapid growth of image and video data on the web, hashing has been extensively studied for image or video search in recent years. Benefiting from recent advances in deep learning, deep hashing methods have achieved promising results for image retrieval. However, there are some limitations of previous deep hashing methods (e.g., the semantic information is not fully exploited). In this p...
متن کاملDeep Discrete Supervised Hashing
Hashing has been widely used for large-scale search due to its low storage cost and fast query speed. By using supervised information, supervised hashing can significantly outperform unsupervised hashing. Recently, discrete supervised hashing and deep hashing are two representative progresses in supervised hashing. On one hand, hashing is essentially a discrete optimization problem. Hence, util...
متن کاملAsymmetric Deep Supervised Hashing
Hashing has been widely used for large-scale approximate nearest neighbor search because of its storage and search efficiency. Recent work has found that deep supervised hashing can significantly outperform non-deep supervised hashing in many applications. However, most existing deep supervised hashing methods adopt a symmetric strategy to learn one deep hash function for both query points and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Sciences
سال: 2021
ISSN: ['0020-0255', '1872-6291']
DOI: https://doi.org/10.1016/j.ins.2021.03.068